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Abstract 

Long-memory time-series analysis is apt to be applied to economic time series which 
extend over many years, in which circumstances the possibility of structural breaks is 
likely to be entertained. Tests for a change in parameter values at a given time point are 
proposed in linear regression models with long-memory errors. Existing tests based on 
the assumption of serially independent or weakly dependent errors will typically be 
invalid in such an environment. The tests are derived in case of certain nonstochastic and 
stochastic regressors, and are given large-sample justification. A small Monte Carlo 
study of finite-sample behaviour is included. 
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1. Introduction 

Testing for economic structural change is currently a very active research area 
(see, e.g., the collections of articles in the recent volumes of Hackl, 1989, and 

Hack1 and Westlund, 1991). Early tests for structural change involved simple 
statistical models, and independence of observations across time. In most time 
series, the serial independence assumption is unlikely to be reasonable, and more 

recent literature has allowed for forms of weak dependence, as well as for unit 
root nonstationarity. However, such dependence structures comprise only 
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a small proportion of the possibilities, and in time-series analysis there has been 
increasing interest in processes which have longer memory than weakly depen- 
dent ones, while at the same time being stationary. In particular, consider 
a scalar, zero-mean covariance-stationary process u,, t = 0, 1, . . . , having 
autocovariance function yj = EuoUj satisfying 

YjmCj2*-’ as j+ co, 

where 

o<c< Go, O<d<+, 

and ‘ - ’ indicates that the ratio of left- and right-hand sides tends to one. 
Although the yj decay to zero, they do so slowly, such that the yj are not 
summable. In general, processes U, satisfying (1) do not satisfy the sort of mixing 
and functions-of-mixing conditions employed in much recent econometric cen- 
tral limit theory, such theory forming the basis of the usual rules of approximate 
statistical inference. Two parametric models which possess property (1) are the 
‘fractional noise’ process given by 

yj=+yo{Ij+ 112*+’ -2ljl’*+l + lj- 112*+‘}, j= 1,2, . . . , (2) 

and a number of versions of the autoregressive fractionally integrated moving 
average given by 

(1 - L)d(l - a,L - ... - aPLp)u, = (1 + blL + ... + b,Lq)&,, (3) 

where L is the lag operator, the pth- and @h-order polynomials have no zeros 
in or on the unit circle, and E, is a sequence of zero-mean uncorrelated homo- 
scedastic variates. In line with much recent econometric limit theory for weakly 
dependent sequences one could doubtless straightforwardly extend our results 
to allow for forms of stable heterogeneity in u,, but while of some practical value, 
such an extension would entail little theoretical interest. 

The present paper explores some implications of long memory dependence of 
form (1) for the problem of testing for a change in parameter values in simple 
models. The problem seems a natural one to study because long-memory 
time-series analysis is often applied to series which extend over a long period of 
time, and the longer the time period the greater the possibility of structural 
breaks. Recent econometric work has studied structural change problems in 
environments which, while not allowing for long-memory behaviour of form (1) 
are in other respects extremely general. We are content to begin here by looking 
at linear regression models with possibly few parameters and with regressors of 
a rather specific form. We also envisage only a single change point at a known 
time, testing the null of no change in parameter against this alternative. Again, 
recent work has allowed for more than one change point, which can occur at 
unknown times. Our simple focus is justified in part because many models still 
used by practitioners are simple, and in a number of problems it is the occurrence 
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or nonoccurrence of a change at a specific time point which is of interest. It is 
also justified by the relative novelty of studying structural change in a long- 
memory environment. Indeed, the statistical methodology and theory of multi- 
variate and nonlinear time series exhibiting long-memory behaviour are not at 
all well-developed even in case of constant-parameter models. 

In this paper we consider models of form 

Yt=P 4 ‘x,+24,, 0 n 

where x, is a K x 1 vector of observable regressors, the prime indicates transposi- 
tion, p(s) is a K x 1 vector such that 

B(s) = PA, O<sbr, 

= B, P t<s<l, (5) 

for a known number r between zero and one, and where the unobservable error 
a, has autocovariances yj satisfying (1). We are concerned with testing 

Ho: PA = bB (6) 

against the alternative 

HI: flA#bB. (7) 

We shall consider both nonstochastic (specifically polynomial-in-time) and 
stochastic regressors. The case of stochastic x, has hardly been explored in 
regression models with long-memory errors, even in case of no strucutral 
change; some preliminary results are in Robinson (1994a) and more compre- 
hensive ones are in Robinson and Hidalgo (1994). We shall also adopt the 
simplifying yet classically important assumption that a, is Gaussian. It would 
certainly be possible to extend our work to certain non-Gaussian u,, such as 
nonlinear functionals of a Gaussian process (Taqqu, 1975) or linear processes 
(Ibragimov and Linnik, 1971; Yajima, 1991). 

The following section proposes a test in case of certain nonstochastic x,. 
Section 3 explores the stochastic case. Some Monte Carlo simulations are 
included in Section 4. Section 5 contains some brief final comments. 

2. Nonstochastic regressors 

We shall employ_ a type of Walt testing procedure, which involves assessing 
the SigIIifiCarXC of PA - flB, where PA and pB are estimates of PA and fis. Because 
the power of a test tends to vary with the efficiency of the parameter estimates 
employed, in general we would wish to employ a form of generalized least 
squares (GLS) estimate. The usual formula for GLS applies here, expressed in 
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terms of the autocovariances yj. If the yj are known up to scale, this GLS 
estimate can be calculated. However, it is rather complicated to calculate and 
theoretically analyze, and there is evidence that for some simple nonstochastic 
regressors, ordinary least squares (OLS) has fairly good asymptotic relative 
efficiency when Yj satisfies (1). (In case of weakly dependent u,, OLS is actually 
asymptotically fully efficient for certain regressors, see Grenander, 1954.) More- 
over, if the Yj are not known up to scale, so that either we have a parametric 
model, or a semiparametric one such as (1) feasible GLS estimates are even 
more difficult to analyze, and apart from the recent paper of Dahlhaus (1992) 
little study of the asymptotic properties of feasible GLS estimates of regressions 
with long-memory errors has yet been made. Therefore we employ OLS esti- 
mates. Yajima (1991) has recently discussed the limiting distributional proper- 
ties of OLS estimates of constant-parameter models with nonstochastic re- 
gressors and long-memory errors. 

For given z, define h = [rn], where [.I indicates integer part. Correspond- 
. . ingly, introduce X1 = (xi, . ,x,,)‘, X2 = (x,,+ ,, . . . ,x,)‘, Yi = (yt, 

Y2 = (yh+l, ... , y,,)', and then estimate PA and ,!IB in (4) and (5) by 
,Yh)‘> 

w = ((Xi x,)-ix;, - (xix,)-ix;)‘, u = (Ui, , &I)‘, 

and let w, be the tth column of W’. Under Ho in (6) 

pA - aB = W’u. 

p, = (Xi x:)-lx; Yl, jB = (xix,)-lx; Y2. 

Put 

(8) 

Assuming also that u, is Gaussian with zero mean, (9) gives 

jA - pB N N(0, W’T W), 

(9) 

(10) 

where r is the n x n Toeplitz matrix (ysdl). 
The covariance matrix W’T W depends on all the Yj, j = 0, 1, . . . , n - 1. In 

some important cases it will be possible to approximate W’T W for large n in 
such a way that only the behaviour of yj for largej will be relevant, so that the 
semiparametric model (1) can be used. A leading case is that of time-trending 
polynomial regressors, that is 

x, = (1, t, . ,tK-‘)‘. 

Define 

D =diag n, it’, . . ,i tZtKml) , 

1 1 
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and note that as n + 00 

Write 

R. = lim D-‘/2X!X.D-1/2 
I I ? i = 1,2, 

n+cc 

SO that Ri = A-1’2QiA-1i2, where 

A = diag {1,4, . . . ,1/(2K - l)>, 

where the (i,j)th elements of the matrices are indicated. Defining PL; = 
(1, t/n, . . . , (t/n)K-‘)u,, we have, much as in, e.g., Lemma 2 of Robinson (1994~) 
(see also Yajima, 1988), 

lim n-‘-“i i E(~~P:)=[ij~i-lr”,~-rlid-ld~dl]=Al, 
n-m S, t=1 00 

lim n-1-2d~~~~=~+lE(~~~:)=[~jSi-1~i1~,-~~2d-1dsdf]=A2, 
n-rm 

lim n-l-2d 

“*U3 
,=;+l ttl E(pL,p(;) = [i i si-’ tj-l/s - t12d-’ dsdr] = A;, 

lim n-l-2d 
ix 

n-t’x s,f=h+l 

11 si-’ tj-‘,s - t,2d-’ dsdr] = AS, 

where again the (i,j)th elements of the matrices are indicated. We deduce from 
the preceding arguments that, under Ho, 

nmd D1j2 (PA - jB) ‘d N(0, Q), (11) 

where 

52= CA1’2(Q;‘A,Q;’ - Q;‘A2Q;’ - Q;‘A;Q;’ + Q;‘A3Q;1)A1’2. 

(12) 

The evaluation of Al, A2, and A3 for given r and d in general requires 
numerical integration. In the simplest case K = 1, corresponding to the simple 
classical change-point problem involving only an intercept parameter, a 
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closed-form formula is available. We have 

Al =j.j.,s-t/2d-1 dsdt = 
T2d+ 1 

00 d(2d + 1)’ 

A,=j;,~t,‘~-~dsdt= 
1 _ (I _ +d+ 1 _ .+J+ 1 

0 * 2d(2d + 1) ’ 

A3 = j i, s - t 12d-1 dsdt = (;(;d’):oul. 
T T 

(Notice that A2 # 0, whereas for weakly dependent u,, with summable yj, we 
would have A2 = 0.) Because A = 1 and Ql = Z, Q2 = 1 - z in the pure intercept 
case, 

1 _ (1 _ +d+l _ +‘+I + (1 - 2)2d+l 

(1 - z)’ 1 
for O<z<l. (13) 

Although z is assumed known, in applications C and d will generally be 
unknown, so that the formula (12) for 52, and its special case (13) when K = 1, 
will be infeasible, while d is also involved in the norming in (11). However, in 
the same way as was shown by Robinson (1994b) in the constant-parameter 
case (and for general K > l), 

(14) 

if ti is c_omputed from the abov_e formulae (J2) or (13) with C and d replaced by 
C and d such that, as n + co, C -+, C and d = d + o,((log n)- ‘). Notice that the 
usual ‘autocorrelation-consistent covariance matrix’ form of scaling which has 
been heavily stressed in recent econometric work, involving a spectral density 
estimate at zero frequency, is inappropriate here (because the spectral density of 
U, is infinite at zero frequency) and would produce an invalid test. 

The need for a d-estimate which differs by o,((log n)- ‘) from d was pointed 
out by Robinson (1994b) in case of polynomial regression with constant para- 
meters. Models (2) and (3) are special cases of parametric models, in which, for 
each j, yj is a uniquely defined function of j and of an unknown parameter vector 
which includes d as an element. For such correctly specified parametric models, 
Gaussian estimates have been shown to be root-n-consistent under various 
conditions, by Fox and Taqqu (1986) and Giraitis and Surgailis (1990). Such 
estimates have been applied to economic time series by Diebold et al. (1990) and 
Sowell (1990), and are clearly attractive if a parametric model can be specified 
with some certainty. In the present case they would be based on OLS residuals 
from regressions before and after the hypothesized structural break. However, if 
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the parametric model is misspecified (for example if p or q is understated in (3)) 
the estimate of d will be inconsistent, and use of such an estimate in (14) will 
produce an asymptotically invalid test. 

So far as (14) is concerned, estimates of parameters describing short- or 
medium-run behaviour (such as the ARMA coefficients in (3)) are useless, and 
moreover only a better-than-log n-consistent estimate of d, and a consistent 
estimate of C, are needed. It is possible to obtain such estimates in a much 
broader environment than that of a specific parametric model, under conditions 
on the autocovariances almost equivalent to (l), and when n is very large these 
have strong appeal. Two such types of estimates are based on the periodogram 
at low frequencies. Defining the OLS residuals 

k = Yt - Bkx,, l<t<h, 

= y, - B’s& h+l<t<n, 

the periodogram is given by 

Now define 

F(d) = ; y”’ I@,), 

j=l 

where [.I again denotes integer part and ilj = 2njJn. Following Robinson 
(1994b), we can then estimate d and C by 

E1 = 2r(2 - 22) cos (8 - a,Jr,&J n$- 1, 

for any q E (0, l), where m is a ‘bandwidths’ sequence that tends to infinity slower 
than n. Note that here we use the correspondence (under suitable conditions) 
between yj - CjZd-l as j + CO, and f(1) - CXzd/2r(l - 2d)cos((+ - d)z) as 
A+ 0 + , where f(J) is the spectral density of u,. It follows from Robinson 
(1994b) that under rather mild conditions (which do not include Gaussianity of 
u,) d1 = d + o,((log n)- ‘), Cl -‘p C. A much longer-established type of estimate 
is due to Geweke and Porter-Hudak (1983). Here the estimate of d is the slope 
coefficient in the OLS regression of log Z(lJ on - log(4sin2f1J and an inter- 
cept, for j = 1, . . . ,m. It has been applied to economic data by Diebold and 
Rudebusch (1989, 1991). However, Geweke and Porter-Hudak (1983) con- 
sidered asymptotic properties only in case - f < d < 0 and even here their 
proof was incorrect, as shown by Robinson (1994~). Their proof requires inter 
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alia that the I(Aj)/f(Aj), where f(Aj) is the spectral density of ut, are asymp- 
totically independent and identically distributed as II + co for fixedj, and this is 
not true for d > 0 or d < 0. Following an earlier suggestion of Kiinsch (1986), 
Robinson (1994~) thus carried out the OLS regression of log I(nj) only over 
j = l+ 1, . . . ,m, where 1 is a trimming number which tends to infinity slower 
than m. Call this d2, and denote by C2 an estimate of C obtained from 
the intercept OLS estimate and the correspondence described above. (In fact 
Robinson, 1994c, obtained a more efficient estimate than this, and considered 
a multivariate time-series extension.) In case of Gaus_sian u,,_Robinson (1994~) 
established the asymptotic distribution properties of C2 and d2 and for suitable 
m these imply the desired properties d2 = d + oP(log n))‘) and C2 --Q C. 

The form of the test statistic in (14) is strongly influenced by the property that 
the polynomial-in-time regressors have all their spectral mass concentrated at 
zero frequency. Other nonstochastic regressors, such as cosinusoids in time, will 
lead to formulae of a different type and will involve estimating other features of 
the autocovariance structure of u,; see Yajima (1991) in the constant-parameter 
case. Different forms of test statistic are also liable to arise in case of stochastic 
regressors, to which we now turn. 

3. Stochastic regressors 

When {x~} is stochastic but independent of Cut} (which is not true when xt 
includes lagged y,), then (10) holds conditionally on {xt}, under Ho, so that 

(W’TIJI’-“~(~~ - bB) N N(0, Ik) 

unconditionally, where ZK is the K-rowed identity matrix. However, we are left 
with the problem of finding a feasible proxy 2 for W ‘r W such that 

in order to obtain that 

In case of weakly dependent ut and xt, an autocorrelation-consistent covariance 
matrix estimate 2 can be employed which involves an estimate of the spectral 
density of X,U, at zero frequency, much as in the estimation of the limiting 
covariance matrix of estimates of constant-parameter models, as indicated by 
Brillinger (1979) and on countless subsequent occasions in the literature. When 
u, satisfies (l), matters are much more complicated. In case of constant-para- 
meter regression, a discussion of this problem was initiated by Robinson (1994a) 
and developed by Robinson and Hidalgo (1994). The outcome depends on 
whether or not x, has zero mean, whether or not there is an intercept, whether or 



J. Hidalgo, P.M. Robinson 1 Journal of Econometrics 70 (1996) 159-I 74 161 

not x, is long memory, whether or not the elements of a vector x, are cross- 
correlated, and on the combined extent of the memory of x, and u,. It is possible 
for the strong autocorrelation in ut and x, to be consistent with a finite spectral 
density matrix of U,X, at zero frequency, when the standard method mentioned 
above is still applicable (though the usual sort of justification based on mixing 
processes is not). However, if U,X, itself has an infinite spectral density matrix at 
zero frequency, then this standard method (whether employing a weighted 
autocovariance, autoregressive or other spectral density estimate) is inconsis- 
tent, and we can also end up with parameter estimates which have a singular 
limiting normal distribution, or which can be nonnormal. The same problems 
beset BA - be, so that a test which may be valid for some x, sequences will be 
asymptotically invalid for others. 

We shall not discuss the various possibilities here but instead we propose 
a simple robust procedure. Let us consider only the case of a simple stochastic 
regression 

(15) 

so K = 2, pi(s), bZ(s) are the components of b(s), and z, is a scalar stationary 
process, independent of u,. The case of multiple stochastic regressors can readily 
be handled, although it complicates matters without giving any further insight 
regarding the proposed simple r_obus_t procedure. Again we test Ho in (6) against 
Hi in (7). Consider first PA = (pAi, PAZ)’ given by (8). Now 

/Xl1 = Y,4 - BA2 y.1 

where j.,, = hK’~:=, yt and F* = h- ‘c :=, z,. For any c we have 

BAl + ii%42 = Y.4 - BA& - i) 

= BAl + iBA2 + u‘4 - @A2 - PAZ) (ZA - 0. 

Similarly, in an obvious notation, 

PB1 + raBz = YE - Be&% - i) 

= Be1 = iBez + &J - (BB2 - BB2) (% - 0. 

Now as in Section 2 we have, under (1) and Gaussianity, 

for 0 < t < 1 (see (13)). Now consider 
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If z, is ergodic in the sense that 6j = cov(zl, z1 +j) + 0, as j + 00, and 
n-rC;=,(z, - Ez,)’ +,, &, as n -+ co, then also h-’ C:= r(z, - ,?J2 jp do. On 
the other hand, 

E us-t E {(zs - f.d (zt - Cd>, 

which is 

h 

cc -{ Ys f 
s,t=l 

. 
For m sufficiently large and any E > 0, there exists I such that I d E/I and 16, ) < E 

d hsfJ j=T__I IYjl+ 2.5% 

= O(h(&h)2d + &h2d+l) 

= o(h 2d-t 1) = O(n2d+ 1) as n+oo, 

h-l 

;, IYjl 

because E is arbitrary. We likewise deduce that, as n + cc, h-‘Cj”= 1 (S,_j + 

St-j) + 0 uniformly in s, t and h-2CC:,k=1 bj_k + 0. It follows that 

E 
i 

til (z, - z,)u, 
i 

2 = o (p+l) as n--km, 

and thus, by Slutzky’s theorem, for ?I,, > 0, 

BA2 - B.42 = 0,(nd-“2) as n-+co. 

Likewise we deduce that 
^ 

882 - A32 = op(nd- 1’2) as n+co. 

Because ZA - [ and Zs - c are both O,(l) it follows that 
I I 

(LO (B,4 - BB) = Ua - 6~ + op(nd-1’2), 

and thus that 

n1i2-d(L 5) @A - PA -‘d .[,, d(2;+ 1) i”d +I:,l’i;” - ‘)I. (16) 

Now (16) holds not only under Ho but whenever 

PA1 - Pm + iu3a2 - PB2) = 0, 
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that is for all departures from the null hypothesis such that 

PA1 - BBl 
882 - DA2 = i. 

(17) 

These are inconsistent directions of a test based on (16). But if (17) holds, then 

~i$Yq, 
B2 A2 

for 5 # [. Now from the above argument, clearly 

n1’2-d(l, 0 @A - $B) -‘d $0, d(zdcc 1) i’” +i:,_“;” - ‘}]y 
indeed 

(1, 5) (/?A - jB) = tiA - ti,j + op(nd- 1’2). 
^ ^ 

Thus nlizPd( 1, [) (PA - PB) and n 1’2 -d(bAl - &?I) converge in distribution to the 
same random variable. It follows as in (16) that for any c, 5, such that c # 5, and 
any rr E (0, lb 

c [T2d + (1 - r)2d - 1) 

d(2d + 1)1 r(1 - z) 1 

under H,,, and that the corresponding test will be consistent against all depar- 
tures (7). We could in fact consider a weighted average of additional terms of the 
same form though this does add to the ambiguity associated with the precise 
choice of statistic. Simple choices of {, 5, and rr in (18) are 

5=1, [=-1, 7c=$. (19) 

Under (19), (18) reduces to 

n’ -2d {@Al - h2 + @A2 - 8B2J2} 

C 

i 

P + (1 - ,)2d - 1 

d(2d + 1) r(1 - z) I 

. 
(20) 

Notice that under H,, the first term in braces in the numerator determines the 
limiting distribution of (20), while under Hi either or both terms in the braces in 
the numerator will cause (20) to tend to infinity in probability. Notice also t_he 
similarity of (20) to a statistic for the weakly dependent case in which fiA1, jIB1 
are aSyIr@OtiCally independent of flA2, pB2 . In any case, to obtain a feasible test 
statistic we have to insert consistent estimates of C and better-than-log n- 
consistent estimates of d, and these can be obtained from OLS residuals as 
indicated in the previous section. 
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4. Monte Carlo simulations 

In the present section we study finite-sample performance of the test proposed 
in the previous section by means of a Monte Carlo study. We employ the model 
(15), where U, and z, are both Gaussian with zero mean and unit variance and the 
autocovariances yj and 6j of U, and z, are given by 

yj = cj2d-1, dj = Bj'g-', j= 1,2 1 “. , (21) 

for B = C = 0.7 and two different values of d = g, namely 0.2 and 0.3. We took 
z = f throughout, and five different sets of parameter values bAl, PSI, ba2, ps2 
were employed. Throughout /IA1 = PA2 = 1, while (as,, /I& was variously (1, l), 
(1.5,l.Q (2,1.5), (0.5, 1.5), (0, 1.5). Thus in the first case we study size, while in the 
last four cases we study power, for various discrepancies in the intercept and 
slope values before and after the structural break. 

All computations were carried out in double precision FORTRAN on the 
L.S.E.‘s VAX computer, using a random number generator from the NAG 
library, the algorithm of Davies and Harte (1987) and the fast Fourier transform 
to generate the u,, z,. For each choice of parameter 5000 replications of series of 
lengths T = 128, 256, 512 were generated. We computed four different test 
statistics. Test 1 uses (20) with the true C and d values. Of course this test is 
almost certainly practically infeasible, but it was performed in order to help 
assess the impact of nuisance parameter estimation employed in other tests. Test 
3 uses (20) wjth d, and C replaced by dl and C1. Test 2 uses (20) with d^, again, but 
in place of C1, C3 = 0.1 CizlfN+jr where ?I = (n -j)-’ C:=j+l U;l;,_j. c, was 
suggested by Robinson (1994a), and is evidently algebraically far simpler than 
el. Finally, test 4 follows conventional econometric practice by using a stan- 
dard autocorrelation-consistent estimate c^, based on the incorrect assumption 
that the spectral density of U, is finite at zero frequency, specifically the Bartlett 
estimate 

0 
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where 

This estimate uses knowledge that the slope and intercept parameter estimates 
are asymptotically independent. 

Table 1 

Bandwidth values used in the tests 

Test 

d = 0.2 d = 0.3 

n= 128 n = 256 n = 512 n= 128 n = 256 n = 512 

2 24,60 40,125 90,250 lo,60 20,125 30,250 

3 90 124 135 70 150 300 

4 13 13 19 13 13 19 

For test 2 the value of (m, N) is indicated, and for tests 3 and 4 the cells indicate the values of m and 

M, respectively. 

Table 2 

d = 0.2 

n= 128 

(13,,,/1,,) Test 10% 5% 1% 

(1,l) 1 9.92 4.74 0.92 

size 2 11.66 6.55 2.40 
3 23.34 14.42 4.40 

4 38.00 30.10 17.80 

n = 256 n = 512 

10% 5% 1% 10% 5% 1% 

10.10 4.70 0.75 9.60 4.10 0.82 
9.20 4.92 1.84 9.46 5.48 1.76 

14.56 6.88 1.64 10.50 4.72 1.22 
36.10 27.14 15.00 34.12 26.00 13.30 

(1.5, 1.5) 

size- 

corr. 

power 

(2.0, 1.5) 
size- 

corr. 
power 

1 38.74 25.42 7.74 

2 33.28 21.16 5.44 

3 42.22 28.02 9.60 

4 40.06 27.46 8.94 

1 72.28 60.18 31.30 
2 57.10 42.96 17.22 

3 74.32 63.12 34.06 

4 67.86 53.96 25.46 

60.94 43.84 19.92 76.08 62.54 26.70 

43.53 29.08 7.90 62.52 43.36 14.58 

37.44 23.22 5.90 74.56 59.64 25.00 

62.68 46.72 21.90 84.84 73.20 43.22 

90.34 82.66 63.56 97.42 94.78 78.82 
73.24 59.68 26.06 90.90 80.50 46.58 

78.52 65.80 32.04 96.92 93.30 73.88 

87.98 79.38 56.90 98.00 95.20 81.48 

(0.5, 1.5) 1 39.00 25.14 7.38 60.80 44.72 20.80 77.44 63.86 28.02 

size- 2 33.56 21.32 5.60 42.48 29.04 8.14 63.44 44.12 15.44 

corr. 3 43.20 28.82 9.30 37.42 23.02 5.78 75.60 61.12 25.60 
power 4 40.84 27.54 8.00 62.26 47.18 22.24 85.72 74.44 44.30 

(0.0, 1.5) 1 72.96 60.18 31.02 90.64 82.58 63.06 97.66 95.16 79.78 
size- 2 57.02 42.16 17.50 12.44 58.34 25.96 91.52 80.62 47.08 
corr. 3 74.02 62.50 34.92 78.22 64.74 32.18 97.20 94.04 74.36 
power 4 68.66 55.22 25.20 88.20 79.36 56.66 98.40 95.96 82.20 
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Table 1 presents the values of m, N, and M used in the results displayed in 
Tables 2 and 3, which record for d = 0.2 and 0.3 respectively Monte Carlo sizes 
[for (per, /Is& = (Ll)] and size-corrected power [for (flsI, fiBZ) = (1.5, 1.5) 
(2, 1.5), (0.5, 1.5), (0, 1.5)] for tests of level lo%, 5%, 1%. Other bandwidth values 
were also tried, but the ones for which results are reported on the whole gave the 
best results. 

For the smaller values of n, the size of test 2 tends to be much closer to the 
asymptotic size than that of test 3, though the discrepancy is significantly 
smaller for d = 0.2 than for d = 0.3, and when n = 512, there is little difference, 
indeed it is hard to choose between these two tests an the infeasible test 1 in the 
latter case. Moreover, in terms of size test 2 is quite close to test 1 throughout. 
The invalidity of test 4 shows up through very large sizes. 

Where size-corrected power is concerned, test 3 rivals the infeasible test 1, and 
is almost uniformly better than test 2, often much better. There is also an almost 
uniform superiority in power for d = 0.2 relative to d = 0.3. Moreover, power 

Table 3 

d = 0.3 

n = 128 n = 256 n = 512 

(/IBBl, bB2) Test 10% 5% 1% 10% 5% 1% 10% 5% 1% 

(1, 1) 1 12.70 6.54 1.34 12.10 6.02 1.12 11.18 4.90 1.16 

size 2 10.70 6.90 3.36 11.32 7.32 3.04 11.12 6.68 2.68 

3 30.78 20.66 8.18 22.86 13.70 4.36 14.94 7.26 2.04 

4 41.36 32.46 20.62 41.54 33.30 19.20 41.28 32.44 19.50 

(1.5, 1.5) 1 37.14 24.26 7.16 47.72 30.70 11.86 61.88 46.26 17.30 

size- 2 26.70 15.46 3.88 35.12 19.02 6.28 43.26 27.48 9.62 

con. 3 38.08 24.86 8.34 32.94 20.26 5.42 61.64 44.26 16.56 

power 4 36.12 24.66 7.42 52.82 36.92 15.54 71.60 57.18 25.12 

(2, 1.5) 1 69.90 57.66 28.14 82.08 71.10 44.86 92.08 85.88 61.12 

size- 2 41.66 29.50 9.96 58.30 41.44 18.30 70.52 56.22 27.58 

corr. 3 70.20 57.78 30.32 71.84 57.44 27.24 91.34 83.90 58.70 

power 4 63.26 50.06 22.48 81.62 70.30 46.26 92.68 86.70 62.16 

(0.5, 1.5) 1 38.08 23.88 6.88 48.14 32.28 11.26 63.12 47.34 17.06 

size 2 25.96 16.18 4.14 34.00 19.32 6.52 43.86 28.54 10.16 

corr. 3 39.42 25.38 7.96 32.50 19.60 5.28 62.96 45.66 16.70 

power 4 36.68 24.48 6.68 53.74 37.86 16.32 72.10 58.30 25.94 

(0, 1.5) 1 70.76 57.90 28.52 81.84 71.02 45.56 92.48 86.62 61.72 

size- 2 41.44 28.90 10.92 57.06 40.84 18.10 71.08 56.68 28.34 

corr. 3 69.58 57.20 31.28 70.70 55.96 27.10 92.06 85.00 59.22 

power 4 64.62 50.76 22.44 81.38 69.98 46.34 93.40 87.14 62.70 



J. Hidalgo, P.M. Robinson / Journal of Econometrics 70 (1996) 159-I 74 173 

seems to improve more slowly as n increases ford = 0.3 than for d = 0.2, as may 
possibly be explained by slower rates of convergence of constituent statistics in 
the former case. Test 4 does better in terms of size-corrected power than the 
other tests on the whole, but it is difficult to see what practical conclusions to 
draw from this experience in view of the very poor size properties we reported. 
We note in conclusion_thaJ even within the class of semiparametric estimates of 
C and d, the estimates d_i, C,, and C3 which we have employed are unlikely to be 
the best. We stressed d1 partly due to its simplicity and its known consistency 
under mild conditions, but the modified version of the Geweke and 
Porter-Hudak (1983) estimates proposed by Robinson (1994~) are likely to be 
more efficient, while Robinson (1994d) has proposed an estimate which domi- 
nates the latter ones. It seems reasonable to suppose that a feasible version of 
(20) using such improved estimates of d and C would perform better than tests 
2 and 3. 

5. Final comments 

While the paper has allowed for a degree of generality in its specification of 
the error structure, by employing a semiparametric rather than a parametric 
model for autocorrelations, it has focussed only on linear regression models (4) 
and simple and specific ones at that. Simple models are nevertheless of interest 
to practitioners, and though there is certainly scope for a more general treat- 
ment, it seems more complicated to treat models involving nonlinearity and 
simultaneity when there is a long-memory ingredient than in the weakly depen- 
dent situations stressed in the econometric literature. Another interesting direc- 
tion for extending the research would be to allow for more than one, or an 
unknown, change point. 
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